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INFLUENCE OF DAMAGE ON CREEP BUCKLING OF A STRUT

JERZY BIAfKI£WlCZ
Division of Solid Medtanics, Chalmers University of Techoology. Gothenburg, Swedent

(Rtctilltd Tl Jllfle 1979; in mired form 6 December 1979)

AlllCnd-Theoreticai aDaIyses of tlte title problem are presented. Two simple mechanical models of a strut
are considered: hinae and sandwich. The analyses consist of two phases: instantaneous load application and
creep and damaae under constant load. The inftucnce on the buckling time of the load. the initial deflection
and the material properties as reftected in the analytical form of constitutive equations is numerically
examined.

l. INTRODUCTION
Theoretical analyses of the behaviour of a compressive rod will be presented. The material
model is assumed as nonlinear viscoelastic (Norton creep) with influence of Kachanov­
Rabotnov type damage. This description of creep buckling of a strut is due to P. O. Bostrom[l,
2]. An instability surface can be defined in the load-deflection-damage space. If the instability
surface is reached by the state point of the strut, buckling takes place. The load history can be
an arbitrary function of time. Aload history according to the Heaviside function will be applied
below. In this case the process will be divided into two phases: an instantaneous load
apptication phase and an ensuiD8 creep phase under constant load. Each of them can separately
lead to instability. The behaviour of the strut is analysed using two mechanical models: a hinge
model and a sandwich model. In both cases strains and damage are localized at the midspan
cross section of the strut.

The governinl set of equations will be formulated in dimensionless variables. The influence
on the buckling time of the load, the initial deflection and the material properties is numerically
examined.

2. TWO MECHANICAL MODELS

Creep and damage separately lead to strongly nonlinear relations between strain rate and
stress. Simultaneous presence of creep deformation and damage will enhance this nonlinearity.
Hence a rod subject to axial loading will take a quite pointed shape. The simplest ap­
proximation of the mechanical behaviour of the rod can be obtained by taking a model which
contains two rigid rods joined by a hinge[3]. Initial and deformed states of the hinge model are
shown in FII. l(a).

The hinae is characterized by a relation between the bending moment M and the angular
deftection ~. Assuming small values of the angle a (Fig. la) those magnitudes can be written as

M=PLa

4> =2a -2aoo

(2.1)

(2.2)

where allO denotes the angle of initial deflection of the rod before load application. The effective
dimensionless bending moment considering damage will take the form

_ M
/L = ,.,.,,(1- OJ) (2.3)

where OJ denotes the damage and J1.o is a constant introduced for dimensional purposes.

tPresent Address: Department of Civil Engineering. Technical University. Cracow. Poland.
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Introduction of Minto (2.3) according to (2.1) yields the following relation

- PLa M- a
IL= --

lLo(1-w) I-w

where M is defined as
- PLM=-.

lLo

(2.4)

(2.5)

The quantity Mwill characterize the value of external load for the hinge model.
A more accurate model of a compressed rod is a sandwich model (Shanley model) [4-6]. In

this model all deformation occurs in two thin flanges, I and 2, see Fig. I(b), which carry only
axial loads. The sandwich model takes into account the difference in damage behaviour under
tension and compression. If the forces in the flanges are denoted 01 and 02, equilibrium
requires

(2.6)

(2.7)

where A is the deflection, 2d is the diameter of the rod and P is the compressive load. Hence
Q2 will be compressive for all deflections, whereas 01 will change from compressive into
tensile, when A exceeds d. Damage therefore will occur in flange I only for A> d. Denoting by
A/2 the cross sectional area of each flange dimensionless stresses can be written as

(2.8)

(2.9)

where WI is the damage in flange I and So is a constant introduced for dimensional purposes.
Introducing here

- PP=­
Aso

- AA=­
d

(2.10)

(2.11 )
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which characterize the external load and the deflection for the sandwich model the expressions
(2.8) and (2.9) can be written in the following form

- I-A
s\=-p-­

I-wI

S2 = - PO +A>.

Below the solution for each model of a rod will be presented separately.

(2.12)

(2.13)

3. BUCKLING OF ROD-HINGE MODEL

For the hinge model the constitutive equations describing the creep and damage [7] in
dimensionless variables are taken as

dt/1 = G'( _,dli + F(-)
doT IL '(f.; IL

dw = '( _)~+/( _).
dT g IL dT IL

Dimensionless time T is here expressed by

t
T=-

to

(3.1)

(3.2)

(3.3)

where t denotes real time and to is a constant introduced for dimensional purposes. The
functions G, F, g and I are usually found to be nonlinear. In this paper they are taken as power
functions

G(Ii) =Ali"

g(li) =CIi"f

F(Ii) =!!- jifJ
to

I( -) D_ 8
IL = to IL· (3.4)

From eqns (3.1), (3.2) and (2.4), (3.4) the governing set of equations follow which can be written
in the form

Rda =SdM + TdT

Rdw =UdM + VdT.

Here the functions R, S, T, U and V are given by

R=2_1f1..(Ma)"f _~(Ma)"
l-w l-w a l-w

S=~(Ma )"
M J-w

T= B( Ma)fJ+~ (Ma ),,+8 _BCy (Ma )11+"f
J-w J-w l-w l-w l-w

U=¥(Ala )"f
M J- w

_ (Ala)" CB'V (Ala )11+"f-~ An.. (Ma )'+'"V-2D - +=.L - -~ _
J-w a J-w a J-w

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.1 J)
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Below, in the numerical analyses of buckling of the compressed rod at elevated temperatures,
the constants describing the properties of the rod will be taken as follows

A == 0.01

71 == I

Blto== 0.1

f3==7

C == 0.1

y==1

D/to == 1.0

8 == 5. (3.12)

These data correspond to creep and damage behaviour, typical of many metals used in high
temperature applications.

A standard type of loading history in creep buckling studies is step loading

(3.13)

where H(r) is the Heaviside unit step function. In this case two phases can be distinguished: an
instantaneous load application phase and a phase under constant load.

The instability surface in load-deflection-damage space for both phases has the equation

R =2_ 2Cy (Ma )1 _ATJ ( Ma )'1 =O.
I-w l-w a I-w (3.14)

The load application phase will first be examined. In this case the governing set of equations
takes the form

da/dM = SIR

dw/dM = UIR.

(3.15)

(3.16)

The solution of the set of differential eqns (3.15) and (3.16) will be determined applying a higher
order Runge-Kutta method. The initial conditions for the functions a(M) and w(M) can be
written

a(O) = aoo w(O) = O. (3.17)

Numerical integration of the eqns (3.15) and (3.16) with initial conditions (3.17) will be carried
out until the state point M, a(M), w(M) reaches the instability surface R = 0 defined by (3.14).
From eqns (3.15) and (3.16) follows that loss of equilibrium in the sense daldM --. 00 and
dwldM --.00 is reached at the surface R = O. The initial conditions (3.17) suggest analysing the
influence of initial deflection aoo on the value of load M, deflection a, and damage parameter w
at instability.

I1Iustrative solutions are presented in Figs. 2. 3 and 4. Continuous lines are connected with
load application. Dashed lines are instability curves in the woP, a-P, w-a planes. It is obvious
that with increasing values of initial deflection aoo the critical value of the load Mis decreasing.
It is seen from Fig. 2 that the critical damage in a buckling problem increases with increasing
initial deflection. For fixed material constants (3.12) the limit value of critical damage is equal to
0.5. From Fig. 3 follows that for aoo> 0.02 instantaneous buckling takes place for ap­
proximately the same growth of deflection !::la = 0.02.

The relations in the w-a plane are shown in Fig. 4. The functions a = a(w) in instantaneous
loading for different values of initial deflection are linear because the exponents a and yare
taken as equal to one. Additionally in Fig. 4 the instability line is presented for the case A = 0
(instantaneous, pure damage buckling). For the chosen values of the material constants the
magnitude of damage in instantaneous buckling in this case does not depend on the initial
deflection of the rod. Instantaneous buckling here always takes place when w = 0.5. This line is
the asymptote for the buckling curve when instantaneous deflections occur (A i- 0).

If the load Mo is less than the value which causes instantaneous buckling, a stable state will
arise and a creep phase will follow. With the load history (3.13) the differential equations
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describing the creep phase take the form

da/dT;;;;; TIR

dfIJldT = VIR.

(3.18)

(3.19)

The initial conditions for the functions a(T') and C&.I(T') take the form

(3.20)

Here ao and ClIo are the hinge angle and damase which have been achieved in the instantaneous
load application phase. The creep buckling time will be obtained as the time when R ;;;;; O. From
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(3.18) and (3.19) follows that creep buckling in the dense da/dT-HtJ and dw/dT~oo is obtained
when the state point Mo. a(T), W(T) reaches the instability surface defined by (3.14).

First the influence of the loadMoon the shape of the functions cr and W will be examined. An
illustrative solution is shown in Fig. 5 when the initial deflection is crOll =0.01. A thick
continuous line shows the conditions for instantaneous buckling when Mo=86 (point H9 =E9).

Points Hj (for i =1. .. 8) on this line show the ends of the instantaneous load application phase
and the beginning of creep phase. The initial conditions (3.20) are described by the co-ordinates
of points R Thin continuous lines show the relation between deflection a and damage W in the
ensuing creep phase. Buckling will occur in points Ej which define the instability curve in the
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w-a plane (dashed line). The instability cutve achieves a maXimum value at the angular
deflection which causes instability in the load region Mo=40-50. From Fig. 5 it seems that the
magnitude of damage will increase during creep buckling when the load value Mo is decreased.
Simultaneously the critical deflection at creep buckling decreases with decreasing load. The
transition from a ductile brittle buckling to a purely brittle buckling is shown in Table I and in
Fig. 6. The solutions when the initial deflection aoo =0.01 and the load Mo= 30 are presented
here.

The solutions have the following interpretation: A =O-no deformation in instantaneous load
application; B =O-no deformation in the creep phase; A =B =O-no deformation at all (pure
brittle buckling). The assumption A =0 has a particularly large influence on the change of the
function a =a(w) (from A;t 0 and B;t 0). Pure brittle buckling occurs when w -+ 1 and when
the initial deflection aoo-+O. In Fig. 6, analogous to Fig. 5, the points Hi determine the beginning
and E; the end of the creep phase.

4. BUCKLING OF ROD-SANDWICH MODEL

In this case the governing set of equations are different for flange I and flange 2. In
dimensionless form they can be written

dfz = G'(sz) dsz+F(sz)
dT d'T

dWI =g'(M dSIH(sl) +!(SI)H(SI)
dT dT

wz=O.

(4.1)

(4.2)

(4.3)

(4.4)

Here II and Iz are the strains in flanges 1and 2respectively. The Heaviside functions H(il ) and
H(ll . It) describe the damage and strain behaviour in flange 1under compression and unloading
respectively. Compatibility requires

A-kof,-fz=--
A

where ko is the dimensionless initial deflection, and

hL
A=2(F

(4.5)

(4.6)

is a dimensionless constant which characterizes the geometry of the rod. The form of the
functions G, F, g and ! is taken analogous as for the hinge model (3.4) formally substituting the
bending moment iJ. by stresses i l or l z• Utilizing the compatibility condition (4.5) the governing

Table l.

A
B Buckling time
'0 (C=O.I.Dlto=I)

0.01 0.1 13.2
0.0 0.1 38.7
0.01 0.0 20.4
0.0 0.0 S7.7
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set of eqns (4.1)-(4.3) after insertion of (2.10) and (2.11) can be written

Ed6.::: IdP +JdT

Edwl::: KdP +Nd'T.

Here the functions E, I, I, K and N are given by

E::: (1- APAT/srl)[I- WI - C-ySTH(sl») - APAT/sr- IH(s, . SI)

I::: A4"1[sW - wl)H(s,' i)- sW - Wj- C-YSTH(s,»]
p

J ::: AA1n}sr+8H(sl) +B(sf - s~)[1- WI - C-yST H(SI)]

K::: Cy!T H(SI)[(l- WI)(1- APAT/sr l)- AT/ ~~ PA]
P s\

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

The functions s. and S2 are defined by expressions (2.12) and (2.13). The governing equations
will be analysed for the case of step loading

(4.14)

Assuming the same material data as for the hinge model viz (3.12) and A::: 25 the load
application phase will first be studied.

For load application equations (4.7) and (4.8) take the form

d6./dP::: lIE

dwddP = KIE

(4.15)

(4.16)
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with initial conditions

941

~(O)=~ (4.17)

In this case the instability surface in the load-deflection-damage space has the equation

The stress S2 will be compressive for all deflections ~ and therefore W2 =O. The stress SI will
change from compressive into tensile, when ~ exceeds 1. This implies that damage creation will
start in flange 1at this instant. The dependence of net stress in flange 1on the extemalload Pfor
different values of initial deflection ~ is presented in Fig. 7. The instability curve in the P-s1

plane is shown by a dashed line. For initial deflection~ in the interval 0.22-1.0 the sign of SI
changes from compressive into tensile. In the limiting case~ == 0.22 buckling occurs when SI
changes sign. For initial deflection~ s 0.22 instantaneous buckling is purely ductile.

The relation between the load, the damage WI and the deflection ~ for different initial
deflections ~ is shown in Figs. 8 and 9. Continuous lines are connected with loading, whereas
dashed lines show the buckling curves. The starting points for the functions p:;:: P(WI) are
different (see Fig. 8) when the initial deflection~< 1. They are connected with the change of

~

Fig. 7.
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Fig. 8.
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the sign of stresses $1 from negative into positive. On the left side of the curve AB, Fig. 9,
instantaneous buckling occurs without damage creation Aoo s; 0.22). If the load Po is less than
the value which causes instantaneous buckling a creep phase will occur.
The governing equations for this creep phase take the form

dK/dT = lIE

dwtldT = NlE.

(4.19)

(4.20)

Initial conditions for the functions K(T) and WI(T) are determined by the previous instantaneous
load application, viz

K(o) = Ko (4.21)

First the influence of the load Po on the critical magnitudes Kand WI is examined. The solution
with initial deflection ~ = 0.7 is shown in Fig. 10. Instantaneous buckling (thick line occurs in
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Table 2.

A Buckling time .
(C =0.1. Dllo=l)

0.01
0.0
(WI
0.0

0.1
0.1
0.0
0.0

6.2 -10-2

4.1 . 10-1

:l.6. 10'
2.2· lOS

0.7 0.8 0.90.$0.5
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tbe point Hs= Hs which is connected with tbe load Po =: 1.4. Points ~ (i =: I. .. 7) define initial
conditions (4.21) for different values of tbe load Po less than 1.4. The creep pbase is presented
by the thin lines. Creep buckling occurs in points H" These points define the dashed instability
curve. If the deflection, reached in instantaneous load application, was less or equal to one,
growth of damage in the creep phase starts from the point A"'" 1 (points Hit Hz, Hl ). The
instability curve has a minimum for Po'" 0.6.

Comparison between Fig. Sand Fig. 10 shows that a maximum in the instability curve for the
binge model corresponds to a minimum in the instability curve for the sandwich model. For
initial deflections Ao> 1 the deflection in tbe sandwich model will increase very little in the
creep phase in contrast to the hinge model.

A similar transition as foc the hinge model from ductile-brittle buckling to purely brittle
buckling is shown in Table 2 and in Fig. 11. In these cases ace illustrated solutions for initial
deflection Aoo = l.l and load Po =0.6. The solutions have the same interpretation as for the
hinge model. The influence of assumptions of material data on buckling time is particularly
presented in Table 2. The relation between i'I1J and Ais shown in Fig. II.

S. FINAL REMARKS

The numerical analysis indicates different behaviour of a rod depending on the assumed
mechanical model (hinge or sandwich). For materials displaying no deformation, instantaneous
or delayed. instability is reached at a finite load or after a finite time. Hence no observable
change in configuration occurs before equilibrium is lost. The dependence of the lifetime ontbe
constitutive parameters is shown in Tables I and 2. It is seen that the sandwich is much more
sensitive to variations in these parameters than is the hinge model. For materials displaying
deformation Fig. 5 and F'.,. 10 show that the critical state is reached after a considerably
smaller deformation in the sandwich model than in the hinge. This indicates that the sandwich
model gives a safer design than does the hinge model.
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